Aryl Radical Cyclizations: One-Pot Syntheses of Protoberberine and Pavine Alkaloids

Kazuhiko Orito,* Yoshitaka Satoh, Hidehito Nishizawa, Rika Harada, and Masao Tokuda Laboratory of Organic Synthesis, Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

Supporting Information: Characterization Data for Compounds 4 -22

General Procedures. Infrared spectra were determined for Nujol mulls, unless otherwise specified. ¹H NMR spectra were measured in CDCl₃ (99.8 atom % D, containing 0.03 % v/v TMS, Aldrich). Mass spectra were recorded with EI at 70 eV. Preparative TLC was carried out on a Merck silica gel 60 PF. 6,7- and 7,8-Methylene-dioxyisoquinolines ($5b^{1}$ and $5c^{2}$) and 6,7- and 7,8-dimthoxyisoquinoline ($5d^{3}$ and $5e^{4}$) were prepared according to the reported methods.

2-(Bromo-4,5-dimethoxyphenyl)ethyl Bromide (4a). General Procedure. NBS

(1.636 g, 9.19 mmol) was added in portions to a stirred solution of 2-(2-bromo-4,5-dimethoxy- β -phenethyl alcohol (2g, 7.66 mmol) and PPh₃ (2.411 g, 9.19 mmol) in dry benzene (15 mL) at the temperature below 10 °C. After being stirred at rt overnight, the mixture was washed with 5 % Na₂S₂O₃ solution (40 mL) and water (40 mL), dried (Na₂SO₄) and concentrated to give a solid (3.453 g). Purification by column chromatography on silica gel (benzene) gave **4a**, mp 69-70 °C (2.246 g, 90 %); IR (Nujol) 1506 cm⁻¹; ¹H NMR (270 MHz) δ 3.21 (t, *J* = 7.6 H, 2H), 3.56 (t, *J* = 7.6 Hz, 2H), 3.85 (s, 3H), 3.87 (s, 3H), 6.76 (s, 1H), 7.01 (s, 1H); EI-MS *m/z* (rel. int.) 324 (M⁺, 79), 243 (26), 229 (100). Anal. Calcd for C₁₀H₁₂O₂Br₂: C, 37.07; H, 3.73; Br, 49.32. Found: C, 37.15; H, 3.77; Br, 49.50.

2-[Bromo-4,5-(methylenedioxy)phenyl]ethyl Bromide (4f): colorless crystals (83%); mp 52-53 °C (Et₂O-pet. ether); IR (Nujol) 1506 cm⁻¹; ¹H NMR (270 MHz) δ 3.18 (t, *J* = 7.9 H, 2H), 3.53 (t, *J* = 7.9 Hz, 2H), 3.96 (s, 2H), 6.74, 6.99 (each s, each 1H); EI-MS *m*/*z* (rel. int.) 308 (M⁺, 64), 227 (22), 213 (100), 148 (27). Anal. Calcd for C₉H₈O₂Br₂: C, 35.10; H, 2.62; Br, 51.89. Found: C, 35.10; H, 2.64; Br, 51.84.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]isoquinolinium Bromide (6a).

General Procedure. To a solution of 4,5-dimethoxyisoquinoline (**5a**, 0.485 g, 3.75 mmol) in CH₃CN (2 mL) was added bromide (**4a**, 1 g, 3.09 mmol) in portions. After the mixture was stirred at 100 °C for 6.5 h, the solvent was evaporated. Recrystallization of the residue from AcOEt gave yellow crystals (1.217 g, 87%); mp 230-231 °C; IR (Nujol) 1511 cm⁻¹; ¹H NMR (270 MHz) δ 3.59 (t, *J* = 7.9 Hz, 2H), 3.82 (s, 3H), 3.86 (s, 3H), 5.31 (t, *J* = 7.9 Hz, 2H), 6.90 (s, 1H), 7.34 (s, 1H), 7.95-8.10 (m, 3H), 8.12-8.22 (m, 3H), 8.44-8.51 (m, 1H), 8.65-8.68 (m, 1H), 11.14 (s, 1H). Anal. Calcd for C₁₉H₁₉NO₂Br₂ + 0.5 MeOH: C, 49.99; H, 4.51; N, 2.98; Br, 34.06. Found: C, 49.82; H, 4.57; N, 2.98; Br, 34.26.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]-6,7-(methylenedioxy)isoquinolinium Bromide (6b): colorless crystals (68%); mp 245-246 °C (EtOH); IR (Nujol) 1619, 1510 cm⁻¹; ¹H NMR (270 MHz) δ 3.59 (t, *J* = 7.6 Hz, 2H), 3.85, 3.89 (each s, each 3H), 5.10 (t, J = 7.6 Hz, 2H), 6.32 (s, 2H), 6.94, 7.27, 7.37 (each s, each 1H), 7.86 (d, J = 6.9 Hz, 1H), 7.92 (s, 1H), 8.13 (dd, J = 6.9 Hz, 1H), 10.95 (d, J = 1.7 Hz, 1H). Anal. Calcd for C₂₀H₁₉NO₄Br₂: C, 48.32; H, 3.85; N, 2.82; Br, 32.14. Found: C, 47.50; H, 4.08; N, 2.74; Br, 32.25.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]-7,8-(methylenedioxy)isoquinolinium Bromide (6c): yellow crystals (66%); mp 259-260 °C; IR (Nujol) 1613, 1509 cm⁻¹; ¹H NMR (270 MHz) δ 3.57 (t, *J* = 7.6 Hz, 2H), 3.84, 3.90 (each 1H, each 3H), 6.45 (s, 2H), 6.92, 7.43 (each s, each 1H), 7.68, 7.75 (AB type *J* = 8.6 Hz, each 1H), 8.16, 8.54 (each d, *J* = 6.9 Hz, each 1H), 10.41 (s, 1H). Anal. Calcd for C₂₀H₁₉NO₄Br₂: C, 48.32; H, 3.85; N, 2.82; Br, 32.14. Found: C, 48.10; H, 4.09; N, 2.74; Br, 31.94.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]-6,7-dimethoxyisoquinolinium

Bromide (6d): yellow crystals (67%), mp 227-228 °C (EtOH); IR (Nujol) 1494 cm⁻¹; ¹H NMR (270 MHz) δ 3.55 (t, *J* = 7.6 Hz, 2H), 3.84, 3.86, 4.13, 4.14 (each s, each 3H), 5.12 (t, *J* = 7.6 Hz, 2H), 6.94, 7.27, 7.3 1 (each s, each 1H), 7.89 (d, *J* = 6.9 Hz, 1H), 8.07 (d, *J* = 6.9 Hz, 1H), 10.87 (s, 1H). Anal. Calcd for C₂₁H₂₃NO₂Br₂: C, 49.15; H, 4.52; N, 2.73; Br, 31.14. Found: C, 48.96; H, 4.67; N, 2.88; Br, 30.25.

2-[2-(2-bromo-4,5-dimethoxyphenyl)ethyl]-7,8-dimethoxyisoquinolinium

Bromide (6e): yellow crystals (80%); mp 180.5-181.5 °C (MeOH-ether); IR (Nujol) 1520 cm⁻¹; ¹H NMR (270 MHz) δ 3.61 (t, *J* = 7.6 Hz, 2H), 3.83 (s, 3H), 3.86 (s, 3H), 4.09 (s, 3H), 4.23 (s, 3H), 5.35 (t, *J* = 7.6 Hz, 2H), 6.94 (s, 1H), 7.30 (s, 1H), 7.83 (d, *J* = 8.9 Hz, 1H), 7.89 (d, *J* = 8.9 Hz, 1H), 8.16 (d, *J* = 6.9 Hz, 1H), 8.97 (d, *J* = 6.9 Hz, 1H), 9.86 (s, 1H). Anal. Calcd for C₂₁H₂₃NO₂Br₂: C, 49.15; H, 4.52; N, 2.73; Br, 31.14. Found: C, 48.88; H, 4.75; N, 2.58; Br, 30.88.

2-{2-[2-Bromo-4,5-(methylenedioxy)phenyl]ethyl}-6,7-dimethoxyisoquinolinium

Bromide (6f): yellow crystals (70%); mp 221-222 °C (MeOH); IR (Nujol) 1493 cm⁻¹; ¹H NMR (270 MHz) δ 3.53 (t, J = 7.3 Hz, 2H), 4.14 (s, 6H), 5.09 (t, J = 7.3 Hz, 2H), 5.96 (s, 2H), 6.97, 7.03, 7.26 (each s, each 1H), 7.87 (d, J = 6.9 Hz, 1H), 7.95 (dd, J = 6.6 Hz, 1H), 10.95 (s, 1H). Anal. Calcd for C₂₀H₁₉NO₂Br₂: C, 48.32; H, 3.85; N, 2.82; Br, 32.14. Found: C, 48.57; H, 3.93; N, 3.05; Br, 32.10.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]-1-oxo-1,2-dihydroisoquinoline (7a). **General Procedure.** To a boiling solution of bromide **5a** (1.0 g, 2.21 mmol) in water (18 mL) was slowly added a solution of K₃[Fe(CN)₆] (1.89 g, 5.74 mmol) and KOH (0.458 g, 8.17 mmol) in water (9 mL). The mixture was then refluxed for 30 min, cooled to rt, and extracted with CH₂Cl₂ (15 mL × 5). The extracts were washed with water (30 mL × 4), dried (Na₂SO₄) and concentrated to give a solid (0.816 g). Recrystallization from MeOH-Et₂O gave **7a** (0.740 g, 86 %), mp 114-115 °C; IR (Nujol) 1652, 1508 cm⁻¹; ¹H NMR (270 MHz) δ 3.17 (t, *J* = 7.3 Hz, 2H), 3.60 (s, 3H), 3.85 (s, 3H), 4.21 (t, *J* = 7.3 Hz, 2H), 6.39 (d, *J* = 7.3 Hz, 1H), 6.59 (s, 1H), 6.80 (d, *J* = 7.3 Hz, 1H), 7.01 (s, 1H), 7.46-7.52 (m, 2H), 7.59-7.66 (m, 1H), 8.44-8.47 (m, 1H); EI-MS *m*/*z* (rel. int.) 387 (M⁺, 3), 308 (15), 242 (100), 145 (7). Anal. Calcd for C₁₉H₁₈NO₂Br: C, 58.78; H, 4.67; N, 3.61; Br; 20.58. Found: C, 58.80; H, 4.78; N, 3.52, Br; 20.72.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]-6,7-(methylenedioxy)-1-oxo-1,2dihydroisoquinoline (7b): colorless crystals (84%); mp 194.5-195.5 °C (MeOH); IR (Nujol) 1652, 1609 cm⁻¹; ¹H NMR (270 MHz) δ 3.15 (t, *J* = 7.3 Hz, 2H), 3.64, 3.85 (each s, each 3H), 4.18 (t, *J* = 7.3 Hz, 2H), 6.07 (s, 2H), 6.25 (d, *J* = 7.3 Hz, 1H), 6.60 (s, 1H), 6.73 (d, *J* = 7.3 Hz, 1H), 6.82, 7.01, 7.80 (each s, each 1H); EI-MS *m/z* (rel. int.) 433 (M^+ , 6.0), 431 (M^+ , 6.0), 352 [(M - Br)⁺, 37.0], 244 (98.0), 242 (100), 189 (17). Anal. Calcd for C₂₀H₁₈NO₅Br: C, 55.57; H, 4.20; N, 3.24; Br; 18.48. Found: C, 55.31; H, 4.35; N, 3.28, Br; 18.52.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]-7,8-(methylenedioxy)-1-oxo-1,2dihydroisoquinoline (7c): colorless crystals (85%); mp 159-160 °C (EtOH); IR (Nujol) 1663, 1609 cm⁻¹; ¹H NMR (270 MHz) δ 3.15 (t, *J* = 7.6 Hz, 2H), 3.67, 3.85 (each s, each 1H), 4.12 (t, *J* = 7.6 Hz, 2H), 6.23 (s, 2H), 6.27, 6.63 (AB type, *J* = 7.6 Hz, 2H), 6.67 (s, 1H), 6.97, 7.16 (each d, *J* = 8.3 Hz, each 1H), 7.01 (s, 1H). EI-MS *m/z* (rel. int.) 433 (M⁺, 6.0), 431 (M⁺, 6.0), 352 (5.0), 244 (20), 242 (20), 189 (100). Anal. Calcd. For C₂₀H₁₈NO₅Br: C, 55.57; H, 4.20; N, 3.24; Br, 18.48. Found: C, 55.37; H, 4.22; N, 3.19; Br, 18.37.

2-[2-(2-Bromo-4,5-dimethoxyphenyl)ethyl]-6,7-dimethoxy-1-oxo-1,2-dihydroiso-quinoline (7d): colorless crystals (87%); mp 71-72 °C (MeOH-ether); IR (Nujol) 1649, 1582, 1510 cm⁻¹; ¹H NMR (270 MHz) δ 3.17(t, *J* = 7.3 Hz, 2H), 3.60 (s, 3H), 3.86 (s, 3H), 3.98 (s, 3H), 4.01 (s, 3H), 4.20 (t, *J* = 7.3 Hz, 2H), 6.29 (d, *J* = 7.26 Hz, 1H), 6.57 (s, 1H), 6.73 (d, *J* = 7.3 Hz, 1H), 6.83 (s, 1H), 7.01 (s, 1H), 7.83 (s, 1H); EI-MS *m*/*z* (rel. int.) 447 (M⁺, 9), 368 (33), 244 (70), 205 (100). Anal Carcd for C₂₁H₂₂NO₅Br: C, 56.26; H, 4.95; N, 3.12; Br, 17.82. Found: C, 56.24; H, 5.04; N, 3.23; Br, 18.04.

Radical Cyclization of Isocarbostyril 7a. 2,3-Dimethoxy-8-oxoberbine (3a). General Procedure. To a stirred and boiling suspension of isocarbostyril **7a** (30 mg, 0.077 mmol) in benzene (6 mL) under N₂ was added a solution of AIBN (1.3 mg, 0.0077 mmol) and Bu₃SnH (45 mg, 0.155 mmol) in dry benzene (4 mL) at once. After the mixture was refluxed for 4 h, the solvent was evaporated. The residue was dissolved in CH₃CN (15 mL) and washed with hexane (30 mL × 4). The CH₃CN fraction gave an oil (41 mg), which was purified by preparative TLC on silica gel, developed with EtOAc and hexane (3:1). A band with R_f 0.61 gave **3a** (21 mg, 87%); mp 144-145°C (MeOH) (lit.⁵ mp 140-141°C; ⁶ 141-142°C; ⁷ 142°C; ⁸143-145°C); ¹H NMR (270 MHz) δ 2.74-2.90 (m, 1H), 2.93-3.03 (m, 3H), 3.22 (m, 1H), 3.86 (s, 3H), 3.92 (s, 3H), 4.87 (m, 1H), 4.99-5.03 (m, 1H), 6.70 (s, 1H), 6.72 (s, 1H), 7.26 (d, J = 7.3 Hz, 1H), 7.39 (t, J = 7.3 Hz, 1H), 7.47 (dt, J = 7.6, 1.7 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H).

When the above reaction was curried out using AIBN (13 mg, 0.077 mmol), **3a** and **8a** were obtained in a ratio of 85:15. Preparative TLC gave **3a** (R_f 0.6, 17 mg, 72%), mp 143-144 °C (MeOH) and **8a** (R_f 0.5, 2.5 mg, 8%), mp 188-189 °C (AcOEt) (lit.⁹ mp 181-182 °C;^{7,10} 189-190 °C; ⁶ 190-191 °C).

2,3-Dimethoxy-10,11-(methylenedioxy)-8-oxoberbine (3b): colorless cryatals (87%); mp 186-186.5 °C (MeOH); IR (Nujol) 1656, 1645, 1613, 1514 cm⁻¹; ¹H NMR (270 MHz) δ 2.73-2.97 (m, 4H), 3.10 (dd, *J* = 12.2, 3.6 Hz, 1H), 3.89, 3.91 (each s, each 3H), 4.81 (dd, *J* = 9.6, 3.6 Hz, 1H), 4.93-4.98 (m, 1H), 6.01, 6.03 (each s, each 1H, 6.69 (s, 3H), 7.59 (s, 1H); EI-MS *m*/*z* (rel. int.) 353 (M, 100), 352 (69.4), 162 (80.6), 176 (20.8), 134 (65.2). Anal. Calcd. For C₂₀H₁₉NO₅: C, 67.98; H, 5.42;N, 3.96. Found: C, 67.05; H, 5.45; N, 3.88.

2,3-Dimethoxy-9,10-(methylenedioxy)-8-oxoberbine (3c): (±)-8-Oxosinactine:

colorless crystals (85%); mp 198-202 °C (MeOH) (lit.² mp 198-200 °C); IR (Nujol) 1646, 1600, 1514 cm⁻¹; ¹H NMR (270 MHz) δ 2.72 - 3.17 (m, 5H), 3.89 (s, 3H), 3.90 (s, 3H), 4.80 (dd, J = 12.9, 3.3 Hz, 1H), 4.98 (dd, J = 8.6, 3.0 Hz, 1H), 6.12, 6.17 (each d, J = 1.3 Hz, each 1H), 6.68 (s, 2H), 6.70, 6.87 (AB type, J = 7.9, each 1H); EI-MS

m/*z* (rel. int.) 353 (M⁺, 100), 338 [(M - Me)⁺, 31.7], 322 [(M - OMe)⁺, 11.0], 190 (22.4), 162 (85.2), 134 (71.5).

2,3,9,10-Tetramethoxy-8-oxoberbine, 8-oxoxylopinine (3d): colorless crystals (82%); mp 191-192 °C (benzene-ether) (lit.⁸ mp 188-89 °C; ¹¹ 190-192 °C; ⁵191 °C; ⁶ 196.5- 198 °C. IR (Nujol) 1607, 1591, 1512 cm⁻¹; ¹H NMR (270 MHz) δ 2.74-3.18 (m, 5H), 3.90, 3.91, 3.947, 3.954 (each s, each 3H), 4.84 (dd, *J* = 13.5, 3.6 Hz, 1H), 6.70, 6.71, 6.72, 7.69 (each s, each 1H).

Treatment of Isoquinolinium Salt 5a with Bu₃SnH. A suspension of isoquinolinium salt **6a** (10 mg, 0.022 mmol) and Bu₃SnH (13 mg, 0.044 mmol) in a mixture of toluene and EtOAc (4:1 v%, 2 mL) under N₂ was refluxed for 20 min and evaporated to give an oil (20 mg), which ¹H NMR spectrum showed only signals for 2-[2-(2'-bromo-4',5'-dimethoxyphenyl)ethyl]-1,2-dihydroisoquinoline **9a** except those for tin-compounds at δ 0.8-1.9. **9a**: IR (neat) 1620, 1607, 1566, 1510 cm⁻¹; ¹H NMR (270 MHz) δ 2.92, 3.22 (each t, *J* = 7.6 Hz, each 2H), 3.70, 3.85 (each 3H, each s), 4.35 (s, 2H), 5.23, 6.10 (each d, *J* = 7.6 Hz, each 1H), 6.69 (s, 1H), 6.82 (dt, *J* = 1.0, 7.6, 7.6 Hz, 1H), 6.90 (d, *J* = 7.6 Hz), 6.96 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.01 (s, 1H), 7.08 (dt, *J* = 1.3, 7.6, 7.6 Hz, 1H); EI-MS *m*/*z* (rel. int.) 373 (12), 244 (100), 229 (37), 144 (95); HRMS calcd for C₁₉H₂₀NO₂Br; 373.0677, found 373.0684.

Radical Cyclization of Isoquinolinium Salt 6a. General Procedure. To a stirred and boiling suspension of isoquinolinium salt **6a** (31 mg, 0.067 mmol) in a mixture of toluene and EtOAc (2:1 v%, 4.5 mL) [this solvent system was also used for **6d**, CH₃CN for **6b**, **c**, **e**, and **f**, and toluene-CH₃CN (1:2) for **10** and **11**] under N₂ was added a solution of AIBN (11 mg, 0.067 mmol) and Bu₃SnH (58 mg, 0.201 mmol) in dry toluene (3 mL) at once. After the mixture was refluxed for 4 h, the solvent was evapotated. The residue was dissolved in CH₃CN (10 mL) and washed with hexane (20 mL × 4). The CH₃CN fraction gave an oil (40 mg), which was purified by preparative TLC on silica gel, developed with 5% MeOH-CH₂Cl₂. A band with R_f 0.5 gave 2,3-dimethoxyberbine (**2a**) as a colorless oil (14.5 mg, 78%);^{2,7,20 1}H NMR (270 MHz) δ 2.58 - 2.70 (m, 2H), 2.91 (dd, J = 15.4, 11.6 Hz, 1H), 3.10-3.20 (m, 2H), 3.34 (dd, J = 16.2, 3.6 Hz, 1H), 3.60-3.68 (m, 1H), 3.88, 3.90 (each s, each 3H), 4.03 (d, J = 14.8 Hz, 1H), 6.62, 6.75 (each s, each 1H), 7.07-7.18 (m. 4H).

(±)-Isosinactine (2b): colorless crystals (82%); mp 158-160 °C (MeOH); IR (Nujol) 1509 cm⁻¹; ¹H NMR (270 MHz) δ 2.56-2.70 (m, 2H), 2.81 (dd, *J* = 15.8, 10.9 Hz, 1H), 3.08-3.17 (m, 2H), 3.21 (dd, *J* = 16.2, 3.0 Hz, 1H), 3.48-3.67 (m, 2H), 3.87, 3.90 (each s, each 3H), 3.93 (d, *J* = 15.8 Hz, 1H), 5.91 (s, 2H), 6.55, 6.62, 6.63, 6.73 (each s, each 1H); EI-MS *m*/*z* (rel. int.) 339 (M⁺, 44), 324 (7.7), 190 (39.1), 148 (100). Anal. Calcd. for C₂₀H₂₁NO₄: C, 70.78; H, 6.24; N, 4.13. Found: C; 70.67; H, 6.21; N, 4.15.

(±)-Sinactine (2c): colorless crystals (77%); mp 170-172 °C (MeOH) (lit.⁸ mp 155-156 °C; ¹² 163-165 °C; ¹³ 166 °C; ^{14,15}167-168 °C; ¹⁶ 168-170 °C; ^{6,17}169-170 °C; ¹H NMR (270 MHz) δ 2.60-2.75 (m, 2H), 2.82 (dd, *J* = 15.8, 10.9 Hz, 1H), 3.07-3.32 (m, 2H), 3.28 (dd, *J* = 15.8, 4.0 Hz, 1H), 3.52-3.62 (m, 2H), 3.87-3.89 (each s, each 3H), 4.11 (d, *J* = 15.5 Hz, 1H), 5.93, 5.97 (each d J = 1.4 Hz, each 1H), 6.62 (s, 1H), 6.64, 6.70 (AB type, *J* = 7.9 Hz, each 1H), 6.73 (s, 1H).

(±)-xylopinine (norcoralydine) (2d): colorless crystals (78%); mp 150-151 °C (CH₂Cl₂-ether); (lit.⁹ mp 142-143 °C; ¹⁹ 146 °C; ^{2,20} 146-147 °C; ²¹ 154-157 °C; ²² 155-157 °C; ¹³ 156-157 °C; ²³ 156-158 °C; ⁵ 157 °C; ^{6,24}157-158 °C; ²⁵ 158-159 °C; ²⁶ 161-163 °C; ²⁷ 182-183 °C; ¹H NMR (270 MHz) δ 2.60-2.70 (m, 2H), 2.83 (dd, *J* =

15.8, 11.2 Hz, 1H), 3.15-3.35 (m, 2H), 3.25 (dd, J = 15.8, 3.6 Hz, 1H), 3.85, 3.86, 3.87, 3.90 (each s, each 3H), 4.02 (d, J = 16.8 Hz, 1H), 6.47, 6.52, 6.57, 6.63 (each s, each 1H).

(±)-**Tetrahydropalmatine** (**2e**): colorless crystals (79%); mp 150-151 °C (lit.²⁰ mp 145-146 °C; ^{12,13,14,28} 147 °C; ²⁹ 148-150 °C; ⁶ 149.5-150.5 °C; ³⁰ 150-151 °C; ³¹ 151-151.5 °C; ¹H NMR (270 MHz) δ 2.61-2.70 (m, 2H), 2.83 (dd, *J* = 15.8, 11.2 Hz, 1H), 3.15-3.23 (m, 2H), 3.25 (15.8, 4.0 Hz, 1H), 3.52-3.57 (m, 2H), 3.86 (s, 6H), 3.87, 3.89 (each s, each 3H), 4.25 (d, *J* = 15.8 Hz, 2H), 6.67, 6.78 (each s, each 1H), 6.78, 6.88 (each d *J* = 8.3 Hz, each 1H).

(±)-isocanadine (2f): colorless crystals (77%); mp 175-176.5 °C; IR (Nujol) 1521, 1503 cm⁻¹; ¹H NMR δ 2.55-2.70 (m, 2H), 2.81 (dd, *J* = 14.5, 11.2 Hz, 1H), 3.05-3.23 (m, 2H), 3.20 (dd, J = 16.2, 3.0 Hz, 1H), 3.54-3.70 (m, 2H), 3.85, 3.86 (each s, each 3H), 3.93 (d, *J* = 14.5 Hz, 1H), 5.92 (s, 2H), 6.57, 6.59, 6.64, 6.74 (each s, each 1H); EI-MS *m*/*z* (rel. int.) 339 (35), 164 (100). Anal. Calcd. for C₂₀H₂₁NO₄: C, 70.78; H, 6.24; N, 4.13. Found: C; 70.59; H, 6.12; N, 4.08.

2-(2'-bromo-4',5'-dimethoxybenzyl)isoquinoline Bromide (10): This was prepared from isoquinoline and 2-bromo-4,5-dimethoxybenzyl bromide [1.0 g, 3.09 mmol, colorless crystals (75% by the aforementioned "General procedure" for salts **6**); mp 84-85°C (Et₂O-Hexane) (lit. mp 82-84°C); ¹H NMR (270 MHz) δ 3.85 (s, 3H), 3.86 (s, 3H), 4.56 (s, 2H), 6.91 (s, 1H), 6.99 (s, 1H)]: yellow crystals (75%); mp 240-242 °C (MeOH); IR (Nujol) 1644, 1509 cm⁻¹; ¹H NMR δ 3.88 (s, 3H), 4.04 (s, 3H), 6.34 (s, 2H), 7.02 (s, 1H), 7.91-7.97 (m, 1H), 8.09-8.11 (m, 2H), 8.17 (s, 1H), 8.20-8.23 (m, 1H), 8.67-8.74 (m, 2H), 11.07 (s, 1H). Anal. Calcd for C₁₈H₁₇NO₃Br₂: C, 49.23; H, 3.91; N, 3.19; Br, 36.39. Found: C, 49.25; H, 3.98; N, 3.08; Br, 36.34.

2-[3-(2-bromo-4,5-dimethoxyphenyl)propyl]isoquinoline Bromide (11): This was prepared from isoquinoline and 3-[2-bromo-4,5-dimethoxyphenyl]propyl bromide {colorless crystals (89%); mp 32-34 °C (Et₂O-Hexane); IR (Nujol) 1652, 1509 cm⁻¹; ¹H NMR δ 2.15 (quartet, J = 6.6 Hz, 2H), 2.83_(t, J = 6.6 Hz, 2H), 3.42 (t, J = 6.6 Hz, 2H), 3.85 (s, 3H), 3.86 (s, 3H), 6.77 (s, 1H), 7.00 (s, 1H); EI-MS m/z (rel. int.) 338 (M⁺, 71), 229 [(M - CH₂CH₂Br)⁺, 100]}. Anal. Calcd for C₁₁H₁₄NO₂Br₂: C, 39.08; H, 4.18; Br, 47.27. Found C, 38.86; H, 4.27; Br, 47.27]. **11**; yellow crystals (78%); mp 143- 144 °C (AcOEt); IR (Nujol) 1645, 1507 cm⁻¹; ¹H NMR δ 2.52 (quint, J = 6.9, 7.3, 7.6 Hz, 2H), 2.94 (t, J = 6.9, 8.6 Hz, 2H), 3.76 (s, 3H), 3.91 (s, 3H), 5.21 (t, J = 7.3, 7.6 Hz, 2H), 6.82 (s, 1H), 7.02 (s, 1H), 7.98 (dt, J = 1.7, 8.3 Hz, 1H), 8.08-8.17 (m, 2H), 8.20 (d, J = 8.6 Hz, 1H), 8.60 (d, J = 8.3 Hz, 1H), 8.72 (d, J = 8.6 Hz, 1H), 11.27 (s, 1H). Anal. Calcd for C₂₀H₂₁NO₂Br₂: C, 51.41; H, 4.54; N, 3.00; Br, 34.20. Found: C, 51.24; H, 4.56; N, 3.04 Br, 34.17.

2-[2-(2-bromo-4,5-dimethoxyphenyl)methyl]-1-oxo-1,2-dihydroisoquinoline (12): colorless crystals (70%); mp 136-137°C (MeOH-Et₂O); IR (Nujol) 1650, 1613 (d), 1509 cm⁻¹; ¹H NMR (270 MHz) δ 3.77 (s, 3H), 3.87 (s, 3H), 5.30 (s, 2H), 6.48 (d, *J* = 7.3 Hz, 1H), 6.95 (s, 1H), 7.04 (s, 1H), 7.17 (d, *J* = 7.3 Hz, 1H), 7.47-7.53 (m, 2H), 7.64 (dt, *J* = 1.3, 1.7, 7.3, 7.6 Hz, 1H), 8.47 (dd, *J* = 1.3, 7.6 Hz, 1H); EI-MS *m/z* (rel. int.) 373 (M⁺, 3), 294 [(M - Br)⁺, 100], 229 (22), 149 (20). Anal. Calcd for C₁₈H₁₆NO₃Br: C, 57.77; H, 4.32; N, 3.74; Br, 21.35. Found C, 57.61; H, 4.39; N, 3.65; Br, 21.38.

2-[3-(2-bromo-4,5-dimethoxyphenyl)propyl]-1-oxo-1,2-dihydroisoquinoline (13): colorless crystals (87 %); mp 109-110 °C (MeOH-Et₂O); IR (Nujol) 1648, 1615(d), 1504 cm⁻¹; ¹H NMR (270 MHz) δ 2.10 (qu, *J* = 7.59, 7.9 Hz, 2H), 2.76 (t, *J* = 7.6, 7.9

Hz, 2H), 3.83 (s, 3H), 3.84 (s, 3H), 4.08 (t, J = 7.3 Hz, 2H), 6.50 (d, J = 7.3 Hz, 1H), 6.76 (s, 1H), 7.00 (s, 1H), 7.07 (d, J = 7.3 Hz, 1H), 7.45-7.52 (m, 2H), 7.63 (dt, J = 1.3, 6.9, 6.9 Hz, 1H), 8.44 (dd, J = 1.3, 6.9 Hz, 1H); EI-MS m/z (rel. int.) 401 (M⁺, 7), 322 [(M - Br)⁺, 25], 159 (54), 40 (100). Anal. Calcd for C₂₀H₂₀NO₃Br: C, 59.71; H, 5.02; N, 3.48; Br, 19.86. Found: C, 59.64; H, 5.09; N, 3.40; Br, 19.99.

7,8-Dimethoxy-5,5a,10,12-tetrahydroisoindolo[**2,1-***b*]**isoquinoline** (**14a**)**:** colorless crystals (49%, R_f 0.5 with 4% MeOH-CH₂Cl₂); mp 129-131 °C (MeOH); IR (Nujol) 1507 cm⁻¹; ¹H NMR (270 MHz) δ 2.98 (dd, J = 14.9, 12.2 Hz, 1H), 3.31 (dd, J = 14.9, 3.3 Hz, 1H), 3.70-3.80 (m, 2H), 3.80-3.97 (hiding, 1H), 3.89, 3.92 (each s, each 3H), 4.19 (d, J = 14.5 Hz, 1H), 4.27 (d, J = 10.9 Hz, 1H), 6.82, 6.86 (each s, each 1H), 7.10-7.25 (m, 4H); EI-MS m/z (rel. int.) 282 [(M + H)⁺, 19.8], 281 (M⁺, 100), 280 [(M - H)⁺, 46.1], 190 (13.2), 177 (22.6), 105 (46.3). Anal. Calcd for C₁₈H₁₇NO₃: C, 76.84; H, 6.82; N, 4.89. Found: C, 76.62; H, 6.89; N, 4.85.

7,8-Dimethoxy-12-oxo-5,5a,10,12-tetrahydroisoindolo[2,1-b]isoquinoline (14b):

colorless crystals (74%) [R_f 0.47 with AcOEt and hexane (4:1), R_f 0.72 for by-product, debrominated reactant]; mp 200-202 °C (MeOH); IR (Nujol) 1656, 1511, 1466, 1335, 1277, 1109, 846 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 3.05 (t, J = 13.5, 14.9 Hz, 1H), 3.31 (dd, J = 4.0, 14.9 Hz, 1H), 3.92 (s, 3H), 3.93 (s, 3H), 4.76 (d J = 15.5 Hz, 1H), 5.08 (d, J = 15.5 Hz, 1H), 5.18 (dd, J = 4.0, 13.6 Hz, 1H), 6.81 (s, 1H), 7.28 (dd, J = 1.7, 7.3 Hz, 1H), 7.38 (t, J = 7.3 Hz, 1H), 7.46 (dt, J = 1.7, 7.3, 7.6 Hz, 1H), 8.10 (dd, J = 1.3, 7.6 Hz, 1H); EI-MS m/z (rel. int.) 295 (M⁺, 100), 280 [(M - CH₃)⁺, 15]. Anal. Calcd for C₁₈H₁₇NO₃: C, 73.19; H, 5.81; N, 4.76. Found C, 73.14; H, 5.96; N, 4.76.

7,8-Dimethoxy-5,5a,10,11,14-pentahydroisoquinolino[3,2-a]-2-benzazepine

(15a): a colorless oil (33%, R_f 0.5 with 5% MeOH-CH₂Cl₂); IR (neat) 1610, 1586, 1517 cm⁻¹; ¹H NMR δ 1.59-1.69 (m, 1H), 1.80-1.95 (m, 1H), 2.89-2.97 (m, 2H), 3.18-3.34 (m, 4H), 3.53 (s, 3H), 3.69 (s, 2H), 3.84 (s, 3H), 4.34-4.38 (m, 1H), 6.51 (s, 1H), 6.65 (s, 1H), 6.93-6.96 (m, 1H), 7.06-7.24 (m, 3H); EI-MS m/z (rel. int.) 399 (60), 254 (52), 159 (100); HRMS calcd for C₂₀H₂₃NO₂ 309.1729, found 309.1743.

7,8-Dimethoxy-5,5a,10,11,14-pentahydro-14-oxoisoquinolino[**3,2-***a***]-2-benz-azepine** (**15b**): colorless crystals (72%) [R_f 0.6 with AcOEt and hexane (3:1), R_f 0.8 for by-product, the debrominated reactant]; mp 153-154 °C (AcOEt); IR (Nujol) 1636, 1517, 1377, 1279 cm⁻¹; ¹H NMR (270 MHz) δ 1.75-2.01 (m, 2H), 2.80-2.90 (m, 1H), 2.95-3.13 (m, 2H), 3.34-3.37 (m, 2H), 3.65 (s, 3H), 3.84 (s, 3H), 4.73-4.81 (m, 1H), 4.90-4.95 (m, 1H9, 6.58 (s, 1H), 6.67 (s, 1H), 7.27-7.36 (m, 2H), 7.45 (m, 1H), 8.03 (m, 1H); EI-MS m/z (rel. int.) 323 (M⁺, 100), 308 [(M - Me)⁺, 5], 177 (23), 118 (52). Anal. Calcd for C₂₀H₂₁NO₃: C, 74.28; H, 6.56; N, 4.33. Found C, 74.59; H, 6.60; N, 4.31.

1-(2-Bromo-4,5-dimethoxybenzyl)-6,7-dimethoxyisoquinoline Methiodide (17). A solution of 2'-bromopapaverie **16** (1.00 g, 2.4 mmol) in methyl iodide (6 ml) was refluxed in an oil bath at 80 °C for 2 h. The resultant solid was washed with ether to give **18** as yellow crystals (1.28 g, 95%), mp 210-211 °C; IR (Nujol) 1514 cm⁻¹; ¹H NMR (270 MHz) δ 3.64, 3.87, 3.97, 4.15, 4.59 (each s, each 3H), 5.02 (s, 2H), 6.37, 7.09, 7.38, 7.57 (each s, each 1H), 8.29 (d, *J* = 7.9 Hz, 1H), 8.87 (d, *J* = 7.9 Hz, 1H). Anal. Calcd for C₂₁H₂₃NO₄BrI: C, 45.02; H, 4.14; N, 2.50; Br + I, 36.91. Found: C, 44.99; H, 3.96; N, 2.41; Br + I, 36.78.

1-(2-bromo-4,5-dimethoxybenzyl)-2-methyl-6,7-dimethoxy-1,2-dihydroisoquinoline (18a). To a stirred suspension of methiodide **17** (128 mg, 0.23 mmol) in dry DME (40 mL) was added LiAlH₄ (131 mg, 3.45 mmol), and the mixture was stirred at 0 °C for 2 h. THF (5 mL) containing water (0.12 ml) was added. Precipitates were removed by suction filtration, and the filtrate was concentrated. The residue was dissolved in CH₂Cl₂ (10 mL), washed with water (10 mL), and dried (Na₂SO₄). Evaporation of the solvent gave **19a** as an air-sensitive solid (88 mg, 88%), ¹H NMR (270 MHz, CDCl₃) δ 2.85 (dd, *J* = 12.8, 8.6 Hz, 1H), 2.96 (s, 3H), 3.10 (dd, *J* = 5.3, 12.8 Hz, 1H), 3.54, 3.58, 3.83, 3.84 (each s, each 3H), 4.45 (dd, *J* = 5.3, 8.6 Hz, 1H), 5.30 (d, *J* = 7.3 Hz, .1H), 5.86 (s, 1H), 6.07 (d, *J* = 7.3 Hz, 1H), 6.09, 6.51, 7.00 (each s, each 1H). This was used for its radical cyclization without further purification.

Treatment of Methiodide 17 with Bu₃SnH. A mixture of **17** (28 mg, 0.05 mmol) and Bu₃SnH (13 mg, 0.15 mmol) in a mixture of DMF and toluene (1:1 v%, 2 mL) was refluxed under N₂ for 4 h and evaporated to give an oil (20 mg), which ¹H NMR spectrum showed only signals for **18a** except those for tin-compounds at δ 0.8-1.9.

1-(2-bromo-4,5-dimethoxybenzyl)-2-methoxycarbonyl-6,7-dimethoxy-1,2-

dihydroisoquinoline (18b). To a stirred solution of 2'-bromopapaverine **17** (20 mg, 0.048 mmol) in CH₃CN (1 mL) in ice bath was added Bu₃SnH (14 mg, 0.048 mmol, 0.013 ml). Five min later, methyl chloroformate (6 mg, 0.057 mmol) was added, and the mixture was stirred at rt for 3 h. The solvent was evaporated to give an oil, which was dissolved in CH₃CN (10 mL) and washed with hexane (20 mL \times 4). The CH₃CN layer was evaporated and purified by preparative TLC on silica gel developed with 3% MeOH-CH₂Cl₂. A band with $R_f 0.5$ gave **18b** as colorless crystals (0.02 g, 87%): mp 151-153 °C (MeOH); IR (Nujol) 1713, 1634, 1603, 1510 cm⁻¹; ¹H NMR (270 MHz, a 1:1 rotamer) δ 2.90 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 6.9 Hz, 1H), 3.10 (dd, J = 13.1, 6.9 Hz, 0.5H), 2.92 (d, J = 13.1, 6.97.3, 13.1 Hz, 0.5H), 3.54, 3.65, 3.69, 3.71, 3.74, 3.76, 3.84, 3.85, 3.86, 3.88 (each s, each 1.5H), 5.47 (d, J = 6.9, 7.3 Hz, 0.5H), 5.56 (dd, J = 6.9, 7.3 Hz, 0.5H), 5.76 (d, J = 7.6 Hz, 0.5H), 5.90 (d, J = 7.9 Hz, 0.5H), 6.17, 6.28, 6.34, 6.36, 6.59, 6.63 (each s, each 0.5H), 6.74 (d, J = 7.6 Hz, 0.5H), 6.94 (d, J = 7.9 Hz, 0.5H), 6.96, 7.02 (each s, each 0.5H); EI-MS *m*/*z* (rel. int.) 478 (M⁺, 1.0), 264 (100). Anal. Calcd for C₂₂H₂₄NO₆Br: 55.23; H, 5.07; N, 2.93; Br, 16.70. Found: C, 55.12; H, 5.15; N, 2.83; Br. 16.56.

1-(2-bromo-4,5-dimethoxybenzyl)-2-ethoxycarbonyl-6,7-dimethoxy-1,2-

dihydroisoquinoline (18c): colorless crystals (72%); mp 141-142 °C (benzene-MeOH); IR (Nujol) 1712, 1637, 1604, 1574, 1509 cm⁻¹; ¹H NMR (270 MHz, a 1:1 rotamer) δ 1.17, 1.25 (each t, *J* = 7.3 Hz, each 1.5H), 2.89 (dd, *J* = 12.9, 7.3 Hz, 0.5H), 2.93 (d, *J* = 7.3 Hz, 1H), 3.09 (dd, *J* = 12.9, 7.3 Hz, 0.5H), 3.67 (s, 1.5H), 3.71 (s, 3H), 3.75, 3.84, 3.85, 3.86, 3.88 (each s, each 1.5H), 3.85, 4.18 (each q, *J* = 7.3 Hz, each 0.5H), 5.47, 5.57 (each t, *J* = 6.9 Hz, each 0.5H), 5.76, 5.91 (each d, *J* = 7.9 Hz, each 0.5H), 6.22, 6.35, 6.59, 6.64 (each s, each 0.5H), 6.77, 6.94 (each d, each 0.5H), 6.96, 7.01 (each s, each 0.5H). EI-MS *m*/*z* (rel. int.) 491 (M⁺, 0.3), 262 (100), 189 (27.4), 46 (13.2). Anal. Calcd for C₂₃H₂₆NO₆Br: 56.10; H, 5.33; N, 2.84; Br, 16.22. Found: C, 56.18; H, 5.35; N, 2.86; Br, 15.93.

(±)-Argemonine (19a). From 1,2-Dihydroisoquinoline 18a. A solution of 18a (15 mg, 0.035 mmol) in dry toluene (2 mL) was refluxed in an atmosphere of Ar in an oil bath at 140 °C. A solution of AIBN (6 mg, 0.035 mmol), and Bu₃SnH (0.02 g, 0.07 mmol, 0.02 ml) in dry toluene (1.6 mL) was added, and the mixture was refluxed for 4 h. After the reaction mixture was evaporated, the resultant mixture was dissolved in CH₃CN (10 mL) and washed with hexane (20 mL × 4). The CH₃CN layer was evaporated. The residue oil was subjected to preparative TLC on silica gel developed with 8% MeOH-CH₂Cl₂. A band with R_f 0.28 gave (±)-argemonine (19a, 9 mg, 78%),

as colorless prisms: mp 135-140 °C (Et₂O) (lit.^{32,33} mp 135-140 °C; ³⁴ 138-140 °C); ¹H NMR (270 MHz) δ 2.53 (s, 6H), 2.59 (d, *J* = 16.2 Hz, 2H), 3.40 (dd, *J* = 5.6, 16.2 Hz, 2H), 3.78 (s, 6H), 3.85 (s, 6H), 4.00 (d, *J* = 5.6 Hz, 2H), 6.45, 6.60 (each s, each 1H).

(±)-Argemonine] (19a). From Methiodide 17. To a sotution of 17 (0.1 g, 0.18 mmol) in dry DMF (5 ml) and toluene (7 mL) was added Bu₃SnH (52 mg, 0.18 mmol, 0.05 mL) and stirred at 140 °C for 1 h under Ar. A solution of AIBN (29 mg, 0.18 mmol), and Bu₃SnH (104 mg, 0.36 mmol) in dry toluene (8 mL) was added, and the mixture was refluxed for 4 h. After the solvents were removed by distillation under reduced pressure, the resultant mixture was dissolved in CH₃CN (20 m) and washed with hexane (40 mL × 4). The CH₃CN layer was concentrated. The residue was subjected to preparative TLC on silica gel developed with 8% MeOH-CH₂Cl₂. A band with R_f 0.28 gave (±)-argemonine (19a, 38 mg, 62%), mp 135-140 °C (Et₂O).

Radical Cyclization of Carbamate 18b and 18c. To a stirred solution of **18b** (50 mg, 0.11 mmol) in toluene (7 mL) under N₂ was added a solution of AIBN (2.0 mg, 0.011 mmol) and Bu₃SnH (68 mg, 0.21 mmol) in dry toluene (5 mL) at once. After the mixture was refluxed for 4 h, the solvent was evaporated. The residue was dissolved in CH₃CN (15 mL) and washed with hexane (30 mL × 4). The CH₃CN fraction gave an oil (44 mg), which was purified by preparative TLC on silica gel (3% MeOH- CH₂Cl₂. A band with R_f 0.3 gave (±)-N-Methoxycarbonylpavine (**19b**) as a colorless oil (62%); IR (neat) 1715, 1654, 1514 cm⁻¹; ¹H NMR (270 MHz, a 1:1 rotamer) δ 2.75 (d, *J* = 15.5 Hz, 2H), 3.36 (dd, *J* = 10.9, 5.3 Hz, 1H), 3.45 (dd, *J* = 11.6, 5.3 Hz, 1H), 3.74 (s, 3H), 3.78 (s, 6H), 3.86 (s, 6H), 5.40, 5.51 (each d, *J* = 5.3 Hz, each 1H), 6.45, 6.47, 6.64, 6.67 (each s, each 1H); EI-MS *m*/*z* (rel. int.) 399 (M⁺, 40), 340 [(M - CO₂Me)⁺, 7], 248 (100); HR-MS calcd for C₂₂H₂₅NO₆ 399.1682, found 399.1662.

A band with $R_f 0.5$ gave 4H-6-Methoxycarbonyl-1,2,9,10-tetramethoxy-6a,7dihydrodibenzo[de,g]quinoline (**20b**) as a colorless oil (1.5 mg, 4%); IR (neat) 1698, 1612, 1519 cm⁻¹; ¹H NMR (270 MHz) δ 2.86 (t, J = 13.2 Hz, 1H), 3.36-3.49 (m, 1H), 3.64, 3.84, 3.89 (each s, 3H), 3.92 (s, 6H),5.02 (dd, J = 3.30, 13.30 Hz, 1H), 5.43 (d, J = 8.3 Hz, 1H), 6.46, 6.81 (each s, each 1H), 6.88 (d, J = 8.3 Hz, 1H), 8.06 (s, 1H); EI-MS m/z (rel. int.) 397 (M⁺, 100), 382 [(M - Me)⁺, 36], 366 [(M - OMe)⁺, 23], 307 [(M - COOMe)⁺, 54]; HRMS calcd for C₂₂H₂₃NO₆ 397.1525, found 397.1519.

(±)-N-Ethoxycarbonylpavine (19c): colorless crystals (64%, R_f 0.2 with 1% MeOH-CH₂Cl₂); mp 191-192 °C (AcOEt-pet. ether) (lit.³⁵ mp 183-184 °C); IR (neat) 1693, 1612, 1517 cm⁻¹; ¹H NMR (270 MHz, a 1:1 rotamer) δ 1.26-1.31 (m, 3H), 2.74 (d, J = 15.8 Hz, 2H), 3.34-3.49 (m, 2H), 3.78 (s, 6H), 3.85, 3.86 (each s, each 3H), 4.13-4.24 (m, 2H), 5.41 (d, J = 5.0 Hz, 1H), 5.52 (d, J = 5.4 Hz, 1H), 6.45 (s, 1H), 6.66 (s, 1H).

4H-6-Ethoxycarbonyl-1,2,9,10-tetramethoxydibenzo[de, g]quinoline (20c): a

colorless oil (5 %, R_f 0.4 with 1% MeOH-CH₂Cl₂); IR (neat) 1709, 1654, 1607, 1594, 1578, 1514 cm⁻¹; ¹H NMR (270 MHz) δ 1.32-1.38 (m, 3H), 2.82-2.91 (m, 1H), 3.39-3.47 (m, 1H), 3.65, 3.89 (each s, each 3H), 3.92 (s, 6H), 4.18-4.34 8 (m, 2H), 5.00-5.08 (m, 1H), 5.43 (d, J = 8.2 Hz, 1H), 6.46, 6.80 (each s, each 1H), 6.90 (d, J = 8.2 Hz, 1H), 8.06 (s, 1H); EI-MS m/z (rel. int.) 411 (M⁺, 100), 394 [(M – Et)⁺, 17], 307 [(M - COOEt)⁺, 59]; HRMS calcd for C₂₃H₂₅NO₆ 411.1694, found 144.1682.

References

- (1) Fritsch, P. Liebigs Ann. 1895, 281, 1-26.
- (2) Govindachari, T. R.; Nagarajan, K.; Charubala, R.; Pai, B. R. *Ind. J. Chem.* **1970**, 8, 763-763.
- (3) (a) Rügheimer, L.: Schön, P.: Ber. 1909, 42, 2374-2377. (b) Späth, E.: Polgar, N. Monatsh. 1929, 51, 190-204. (c) Forsyth, R.; Kelly, C.; Pyman, F. J. Chem. Soc. 1925, 127, 1659-1667.
- (4) (a) Sainsbury, M.; Brown, D. W.; Dyke, S. F.; Hardy, G. *Tetrahedron* 1969, 25, 1881-1895. (b) Perkin, W. H.; Robinson, R. J. Chem. Soc. 1914, 105, 2376-2404.
- (5) Pandey, G.; Tiwari, K. P. Tetrahedron 1980, 37, 1213-1214.
- (6) Ninomiya, I.; Naito, N.; Takasugi, H. J. Chem. Soc. Perkin Trans. 1, 1975, 1720-1724.
- (7) Brown, D. B.; Dyke, S. F. Tetrahedron 1966, 22, 2429-2435.
- (8) Lentz, G. R. J. Org. Chem. 1974, 39, 2846-2851.
- (9) Lentz, G. R. J. Org. Chem. 1974, 39, 2839-2845.
- (10) Huffman, J. W.; Miller, E. G. J. Org. Chem. 1960, 25, 90-92.
- (11) Ninomiya, I.; Naito, T. J. Chem. Soc. Chem. Commun. 1973, 137. .
- (12) Narashimhan, N. S.; Mali, R. S.; Kulkarmi, B. K. *Tetrahedron* **1983**, *39*, 1975-1982.
- (13) Kiparissides, Z.; Fichtner, R. H.; Poplawski, J.; Nalliah, B. C.; MacLean, D. B. *Can. J. Chem.* **1980**, *58*, 2770-2779.
- (14) Bradsher, C. K.; Dutta, N. L. J. Org. Chem. 1961, 26, 2231-2234.
- (15) Rajaraman, R.; Pai, B. R.; Premila, M. S.; Suguna, H. Ind. J. Chem. **1977**, 15B, 876-879.
- (16) Orito, K. Miyazawa, M.; Kanbayashi, R.; Tokuda, M.; Suginome, H. J. Org. Chem. 1999, 64, 6583-6596
- (17) Haworth, R. D.; Perkin, W. H., Jr. J. Chem. Soc. 1926, 1769-1784...
- (18) Kametani, T.; Honda, T.; Fukuyama, K. J. Chem. Soc. Perkin Trans. 1 1976, 1221-1225.
- (19) Harn, G.; Kley, W. Chem. Ber. 1937, 70, 685-688.
- (20) Dean, R. T.; Rapoport, H. J. Org. Chem. 1978, 43, 2115-2122.
- (21) Dai-Ho, G.; Mariano, P. S. J. Org. Chem. 1987, 52, 706-707.
- (22) Dyke, S. F.; Brown, D. W.; Sainsbury, M.; Hardy, G. *Tetrahedron* **1971**, *27*, 3495-3502.
- (23) Orito, K.; Matsuzaki, T.; Suginome, H. Org. Prep. Proc. Int. 1989, 21, 309-3314.
- (24) Battersby, A. R.; Le Count, D. J.; Garrant, S.; Thrift, R. I. *Tetrahedron* **1961**, *14*, 46-53.
- (25) Craig, L. E.; Tarbell, D. S.; J. Am. Chem. Soc. 1948, 70, 2783-2785.
- (26) Weimar, C.; von Angerer, S. Wiegrebe, W. Arch. Pharm. 1991, 324, 509-518.
- (27) Lentz, G. R. J. Org. Chem. 1977, 42, 1117-1122.
- (28) Haworth, R. D.; Koepfli, J. B.; Perkin, W. H., Jr. J. Chem. Soc. 1927, 548-554.
- (29) Narashimhan, N. S.; Ranade, A. C.; Bhide, B. C. *Ind. J. Chem.* **1981**, *20B*, 439-440
- (30) Kessar, S. V.; Singh, P.; Vohra, R.; Kaur, N. P.; Venugopal. D. J. Org. Chem. 1992, 57, 6716-6720.
- (31) Kametani, T.; Noguchi, I.: Saito, K.; Kaneda, S.; *J. Chem. Soc. (C)* **1969**, 2036-2038.
- (32) Battersby, A. R.; Binks, R. J. Chem. Soc. 1955, 2888-2896.
- (33) Rice, K. C.; Ripka, W. C.; Reden, J.; Brossi, A. J. Org. Chem. **1980**, 45, 601-607.
- (34) Nomoto, T.; Takayama, H. J. Chem. Soc. Chem. Commun. 1982, 1113-1115.
- (35) Baker, A. C.; Battersby, A. R. J. Chem. Soc (C) 1967, 1317-1323.